108 research outputs found

    What simplified models say about unitarity and gravitational collapse

    Get PDF
    This paper is an extended version of a talk at the conference Constrained Dynamics and Quantum Gravity QG99. It reviews some work on the quantum collapse of the spherically symmetric gravitating thin shell of zero rest mass. Recent results on Kucha\v{r} decomposition are applied. The constructed version of quantum mechanics is unitary, although the shell falls under its Schwarzschild radius if its energy is high enough. Rather that a permanent black hole, something like a transient black and white hole pair seems to be created in such a case.Comment: 17 pages, uses amstex, no figure

    Quantum superposition principle and gravitational collapse: Scattering times for spherical shells

    Full text link
    A quantum theory of spherically symmetric thin shells of null dust and their gravitational field is studied. In Nucl. Phys. 603 (2001) 515 (hep-th/0007005), it has been shown how superpositions of quantum states with different geometries can lead to a solution of the singularity problem and black hole information paradox: the shells bounce and re-expand and the evolution is unitary. The corresponding scattering times will be defined in the present paper. To this aim, a spherical mirror of radius R_m is introduced. The classical formula for scattering times of the shell reflected from the mirror is extended to quantum theory. The scattering times and their spreads are calculated. They have a regular limit for R_m\to 0 and they reveal a resonance at E_m = c^4R_m/2G. Except for the resonance, they are roughly of the order of the time the light needs to cross the flat space distance between the observer and the mirror. Some ideas are discussed of how the construction of the quantum theory could be changed so that the scattering times become considerably longer.Comment: 30 pages and 5 figures; the post-referee version: shortened and some formulations improved; to be published in Physical Revie

    The quasi-classical model of the spherical configuration in general relativity

    Get PDF
    We consider the quasi-classical model of the spin-free configuration on the basis of the self-gravitating spherical dust shell in General Relativity. For determination of the energy spectrum of the stationary states on the basis of quasi-classical quantization rules it is required to carry out some regularization of the system. It is realized by an embedding of the initial system in the extended system with rotation. Then, the stationary states of the spherical shells are S-states of the system with the intrinsic momentum. The quasi-classical treatment of a stability of the configuration is associated with the Langer modification of a square of the quantum mechanical intrinsic momentum. It gives value of critical bare mass of the shell determining threshold of stability. For the shell with the bare mass smaller or equal to the Planck's mass, the energy spectra of bound states are found. We obtain the expression for tunneling probability of the shell and construct the quasi-classical model of the pair creation and annihilation of the shells.Comment: 22 pages, sprocl.sty, 3 figure

    Singularity avoidance by collapsing shells in quantum gravity

    Get PDF
    We discuss a model describing exactly a thin spherically symmetric shell of matter with zero rest mass. We derive the reduced formulation of this system in which the variables are embeddings, their conjugate momenta, and Dirac observables. A non-perturbative quantum theory of this model is then constructed, leading to a unitary dynamics. As a consequence of unitarity, the classical singularity is fully avoided in the quantum theory.Comment: 5 pages, 1 figure, received honorable mention in the 2001 essay competititon, to appear in Int. J. Mod. Phys.

    Group quantization of parametrized systems I. Time levels

    Full text link
    A method of quantizing parametrized systems is developed that is based on a kind of ``gauge invariant'' quantities---the so-called perennials (a perennial must also be an ``integral of motion''). The problem of time in its particular form (frozen time formalism, global problem of time, multiple choice problem) is met, as well as the related difficulty characteristic for this type of theory: the paucity of perennials. The present paper is an attempt to find some remedy in the ideas on ``forms of relativistic dynamics'' by Dirac. Some aspects of Dirac's theory are generalized to all finite-dimensional first-class parametrized systems. The generalization is based on replacing the Poicar\'{e} group and the algebra of its generators as used by Dirac by a canonical group of symmetries and by an algebra of elementary perennials. A number of insights is gained; the following are the main results. First, conditions are revealed under which the time evolution of the ordinary quantum mechanics, or a generalization of it, can be constructed. The construction uses a kind of gauge and time choice and it is described in detail. Second, the theory is structured so that the quantum mechanics resulting from different choices of gauge and time are compatible. Third, a practical way is presented of how a broad class of problems can be solved without the knowledge of explicit form of perennials.Comment: After discussions at Imperial College, a great improvement is achieved. I particular, it is shown that many problems can be solved without explicit knowledge of the perennial

    Changes of Separation Status During Registration and Scattering

    Get PDF
    In our previous work, a new approach to the notorious problem of quantum measurement was proposed. Existing treatments of the problem were incorrect because they ignored the disturbance of measurement by identical particles and standard quantum mechanics had to be modified to obey the cluster separability principle. The key tool was the notion of separation status. Changes of separation status occur during preparations, registrations and scattering on macroscopic targets. Standard quantum mechanics does not provide any correct rules that would govern these changes. This gives us the possibility to add new rules to quantum mechanics that would satisfy the objectification requirement. The method of the present paper is to start from the standard unitary evolution and then introduce minimal corrections. Several representative examples of registration and particle scattering on macroscopic targets are analysed case by case in order to see their common features. The resulting general Rule of Separation Status Changes is stated in the Conclusio

    Quantum Model of Classical Mechanics: Maximum Entropy Packets

    Get PDF
    In a previous paper, a statistical method of constructing quantum models of classical properties has been described. The present paper concludes the description by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the state operators of ME packets is obtained with its help. The diagonal representation of the operators is found. A general way of calculating averages that can replace the partition function method is described. Classical mechanics is reinterpreted as a statistical theory. Classical trajectories are replaced by classical ME packets. Quantum states approximate classical ones if the product of the coordinate and momentum variances is much larger than Planck constant. Thus, ME packets with large variances follow their classical counterparts better than Gaussian wave packet

    Freedom in nature

    Get PDF
    The paper starts with the proposal that the cause of the apparent insolubility of the free-will problem are several popular but strongly metaphysical notions and hypotheses. To reduce the metaphysics, some ideas are borrowed from physics. A concept of event causality is discussed. The importance of Hume's Principle of Causality is stressed and his Principle of Causation is weakened. The key concept of the paper, the so-called relative freedom, is also suggested by physics. It is a kind of freedom that can be observed everywhere in nature. Turning to biology, incomplete knowledge is defined for all organisms. They cope with the problem by Popper's trial and error processes. One source of their success is the relative freedom of choice from the basic option ranges: mutations, motions and neural connections. Finally, the conjecture is adopted that communicability can be used as a criterion of consciousness and free will is defined as a conscious version of relative freedom. The resulting notion is logically self-consistent and it describes an observable phenomenon that agrees with our experienc

    Embedding variables in finite dimensional models

    Get PDF
    Global problems associated with the transformation from the Arnowitt, Deser and Misner (ADM) to the Kucha\v{r} variables are studied. Two models are considered: The Friedmann cosmology with scalar matter and the torus sector of the 2+1 gravity. For the Friedmann model, the transformations to the Kucha\v{r} description corresponding to three different popular time coordinates are shown to exist on the whole ADM phase space, which becomes a proper subset of the Kucha\v{r} phase spaces. The 2+1 gravity model is shown to admit a description by embedding variables everywhere, even at the points with additional symmetry. The transformation from the Kucha\v{r} to the ADM description is, however, many-to-one there, and so the two descriptions are inequivalent for this model, too. The most interesting result is that the new constraint surface is free from the conical singularity and the new dynamical equations are linearization stable. However, some residual pathology persists in the Kucha\v{r} description.Comment: Latex 2e, 29 pages, no figure

    The Quantum Measurement Problem and Cluster Separability

    Get PDF
    A modified Beltrametti-Cassinelli-Lahti model of the measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that the separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens when these changes occur and that guarantees the objectification is formulated and discussed. A part of our result has certain similarities with ‘collapse of the wave function
    corecore